

ISO 9001 CERTIFIED CIRCUIT DIAGRAM Cable gland M12 6 WHITE Ø Ø 00 Ø 100V RED 00 Secondary 610mr nominal tappings 30,0 W 1:4 1:3 15,0 W 2:4 10,0 W 1:2 7,5 W 3:4 3,5 W 2:3 2,0 W

Specifications	
Material / Color	(Aluminum, PA)/RAL9010 or anodized
Mounting	Swivel bracket
Termination	Inside screw terminals
Weight w/transformer	3,4 kg
IP-rating	54
Max. / min. amb. temp	110°C / -20°C
Rated / max. power	30 W / 40 W
SPL 1W/1m	90 dB
SPL rated power	103 dB
Effective freq. range	120 – 20000 Hz
Dispersion (-6dB) 1kHz / 4kHz	200° / 90°
Directivity factor, Q	NA
Options	Impedances, colors, labels

Installation, Operation and Maintenance Procedures

- Termination side is marked with label.
- Remove lid by 3 screws, lead cable through the cable gland and connect to terminal 70V (white green) or 100V (white red).
- Choose required power on the transformer.
- Screw lid back into place by 3 screws with a torque of 1 2 Nm to assure the IP rating.
- To mount, slide two M6 nuts in slot and fasten the swivel bracket with two bolts. Slide swivel bracket to wanted position and tighten bolts.
- For optimum performance, always use the correct voltage / power and operate within the frequency limits as stated
- Do not open loudspeaker when energized.
- This loudspeaker is supplied with a 2 year warranty against defective workmanship.
- Available with an aluminum swivel bracket.

 ϵ